viernes, 27 de noviembre de 2015

El atlas más fino del cerebro

Un equipo internacional reconstruye la mente de una mujer en 3D en una resolución casi celular

El ‘BigBrain’ abre una vía para entender las bases neurobiológicas de la cognición, el lenguaje y las emociones, investigar enfermedades y desarrollar fármacos

JAVIER SAMPEDRO | 20 JUN 2013 - 17:36 CET

Procesamiento de las capas del cerebro. / AMUNTS, ZILLES, EVAN ET AL (SCIENCE)

El sueño de un neurocientífico es llegar a conocer el cerebro humano con la misma precisión que el sistema nervioso del gusano Caenorhabditis elegans, cuyas 100 neuronas exactas con todas sus conexiones sinápticas son desde hace años un libro abierto para la ciencia. Y hoy se acercan más que nunca a ese ideal con BigBrain, una reconstrucción digital del cerebro humano completo en 3D y ultra-alta resolución que deja muy atrás a cualquier iniciativa anterior de este estilo. BigBrain es la herramienta esencial que necesitan los laboratorios neurológicos de todo el mundo para elucidar la forma y la función de nuestro cerebro. Y estará disponible públicamente a coste cero.

Hasta ahora existen otros atlas del cerebro, pero solo llegan al nivel macroscópico, o visible. Su resolución solo llega al nivel de un milímetro cúbico, y en ese volumen de cerebro caben fácilmente unas 1.000 neuronas. El nuevo BigBrain baja el foco hasta un nivel “casi celular”, según los científicos que lo han creado. Eso quiere decir que llega a discriminar cada pequeño circuito de neuronas que está detrás de nuestra actividad mental, y que puede abarcar toda la información disponible sobre el cerebro, desde los genes y los receptores de neurotransmisores hasta la cognición y el comportamiento.

El cerebro de referencia se basa en el de una mujer fallecida a los 65 años, que ha sido fileteado en 7.400 secciones histológicas de solo 20 micras (el espesor de un cabello, y cerca de la dimensión de una célula). El BigBrain, según sus creadores, abre el camino para entender las bases neurobiológicas de la cognición, el lenguaje y las emociones, y también para investigar las enfermedades neurológicas y desarrollar fármacos contra ellas. El modelo se presenta en Science y estará disponible para usuarios registrados en http://bigbrain.cbrain.mcgill.ca.

El trabajo ha sido coordinado por Katrin Amunts, del Instituto de Neurociencia y Medicina de Jülich, en Alemania; y Alan Evans del Instituto Neurológico de la Universidad McGill en Montreal, Canadá. Ambos explicaron su investigación en una teleconferencia para la prensa junto al editor de Science, Peter Stern.

Tal vez la línea celular humana más utilizada por los laboratorios de todo el mundo durante el último medio siglo sea la línea HeLa; el cultivo proviene de un tumor de útero que le fue extirpado en 1951 a una paciente llamada Henrietta Lacks (de ahí el nombre de la línea) que, pese a haber muerto unos meses después de la operación, consiguió así una singular forma de inmortalidad.

No es extraño que los periodistas mostraran ayer un especial interés en la mujer de 65 años que ha visto inmortalizado su cerebro como un modelo digital que pervivirá durante siglos o milenios. Quién sabe si la neurociencia del futuro será capaz de reconstruir a partir de BigBrain los pensamientos y deseos más ocultos de esa mujer, los recovecos de sus emociones y las ambigüedades de su moralidad. Eso es desnudarse para la posteridad, ríanse ustedes de una autobiografía.

La insistencia de los medios, sin embargo, se topó con el compromiso insobornable de los científicos de preservar la intimidad de la mujer fallecida. Ni Amunts, ni Evans ni su colega Karl Zilles, ni por supuesto el editor de Science que había organizado la comparecencia, quisieron dar noticia sobre la vida que, de algún modo, han registrado para la posteridad. Amunts se limitó a decir que “carecía de un historial neurológico o psiquiátrico”, y que en ese sentido “es lo que llamaríamos un cerebro normal”. Este hecho, al menos, nos aparta del mito de Frankenstein por una vez.

“Los autores han ampliado los límites de la tecnología actual”, dijo Stern, que ve la investigación, en cierto modo, como la consecuencia natural del trabajo de los neuroanatomistas clásicos, con Cajal a la cabeza, que sentaron hace un siglo las bases de la descripción estructural del cerebro humano. La mayor parte de la gente, incluidos los estudiantes de medicina, tiende a ver la anatomía como un tostón fastidioso si bien ineludible para aprobar el curso.

Pero si la biología nos ha enseñado una lección es que la forma explica la función, que entender el funcionamiento de un sistema biológico empieza siempre por ver su estructura. Recuerden la genética: la mera, simple y desnuda forma de la doble hélice del ADN, donde las letras de una hilera se complementan con las de la otra, explica por sí sola que los seres vivos puedan sacar copias de sí mismos. También la forma de las proteínas, con sus hélices y sus hojas y sus caprichosos plegamientos, suele explicar lo que hace cada una de ellas, desde quemar el azúcar que comemos hasta activar las neuronas que nos hacen pensar.

Stern, como muchos otros científicos, está convencido de que esa ley no formulada de la biología tiene jurisdicción también sobre el cerebro, sobre los mecanismos de nuestra vida mental. Somos formas. “Este trabajo puede verse como una culminación de la anatomía”, dijo el editor de Science. “Sin un profundo conocimiento de la estructura del cerebro nunca entenderemos el resto de la neurobiología”.

Evans también proclamó: “La gran ciencia ha llegado al cerebro”. El eslogan es una referencia velada a los proyectos genoma y los aceleradores de partículas, que ya implican cifras de seis dígitos, programación a medio plazo y unos equipos científicos cuyas firmas rara vez caben en la página de la revista científica donde se publican. Pese a que hay cientos de laboratorios en el mundo investigando en neurobiología, el cerebro no contaba hasta ahora con una gran planificación de este tipo, como las que se usan para secuenciar el genoma humano o encontrar el bosón de Higgs. La gran ciencia ha llegado al cerebro.

Pese a la indudable profundidad de las cuestiones implicadas, los grandes logros del trabajo han sido de tipo técnico. “El proyecto ha sido un tour de force para ensamblar las imágenes de más de 7.400 secciones histológicas individuales”, explica Evans, “cada una con sus propias distorsiones, rasgaduras y desgarrones, en un todo coherente, un volumen en tres dimensiones. BigBrain permite por primera vez una exploración en 3D de la anatomía citoarquitectónica humana”. El prefijo cito significa célula, y en boca de Evans quiere enfatizar la gran resolución de su modelo, cercana al nivel celular: muy cerca del sueño del gusano Caenorhabditis elegans.

Los científicos tomaron el cerebro de la mujer muerta a los 65 años y lo encastraron en cera de parafina, un paso previo usual antes de una disección fina. Y esta fue finísima: las lonchas solo tenían 20 micras (milésimas de milímetro) de espesor. Ni siquiera un científico alemán tiene el pulso tan firme como para hacer eso, y los investigadores usaron una máquina especial para ese propósito, un microtomo gigantesco.

Las finísimas lonchas del cerebro de la mujer se montaron en portaobjetos y se trataron con sustancias que tiñen las estructuras celulares más importantes, muy a la Cajal o a la Golgi, si se mira bien. Lo que jamás podrían haber soñado esos grandes neurólogos del pasado es el prodigioso poder de computación, y la sofisticación de las matemáticas asociadas, al que tiene acceso la ciencia actual. Con todo, recolectar los datos llevó cerca de 1.000 horas, y los robots todavía no lo pueden hacer todo.

BigBrain, el gran mapa en 3D y resolución “casi celular” que ya forma parte del dominio público, es un gran paso hacia el entendimiento profundo del cerebro y la mente. Su objetivo no es otro que comprender los fundamentos neurobiológicos del aprendizaje y la adquisición de conocimiento, del lenguaje y las emociones, de la torpeza y de la creatividad humana. Es público y gratis, y de momento no sirve para espiar a nadie.


http://sociedad.elpais.com/sociedad/2013/06/20/actualidad/1371742600_459472.html

viernes, 13 de noviembre de 2015

New growth for optical coherence tomography

08 May 2008

Optical coherence tomography is an emerging medical imaging technology with an ever growing list of applications. Marie Freebody speaks to James Fujimoto to find out more.

James Fujimoto is a professor at the Massachusetts Institute of Technology in the US and is one of the key players responsible for the invention and development of optical coherence tomography (OCT) in the early 1990s. Fujimoto also has an active commercial side and has co-founded two companies, one of which was acquired by Zeiss and led to the first OCT instrument for clinical ophthalmology. The second company is currently developing intravascular and endoscopic OCT.

Can you explain how OCT works?
OCT enables micron-scale, cross-sectional and three-dimensional (3D) imaging of biological tissues in situ and in real time. The technique measures the echo time delay and intensity of backscattered light using interferometry with broadband light sources or with frequency swept lasers. The approach is analogous to ultrasound, except that imaging is performed by measuring light rather than sound. The imaging depths are typically around 2 mm, which is shallow compared with ultrasound. However, OCT can provide much higher image resolutions of a few microns.

Two-dimensional (2D), cross-sectional OCT images of tissue are constructed by scanning the optical beam and performing axial measurements of light echoes at different transverse positions. The result is a 2D array, which represents the backscattering in a cross-sectional slice of the tissue. 3D imaging can also be performed by using a 2D scan pattern.

Why is it important to develop OCT?
OCT can function as a type of "optical biopsy", imaging tissue microstructure in situ and in real time without removing and processing tissue specimens. OCT can be used where excisional biopsy would be hazardous or impossible, such as imaging the retina, coronary arteries or nervous tissues. There is considerable interest in developing OCT to guide excisional biopsy, to reduce false negatives and improve imaging sensitivity. Since OCT can see beneath the surface of tissue, it can also be used to guide surgical interventional procedures. OCT also has the advantage that it can perform repeated imaging over a period of time and therefore monitor the progression of disease or response to therapy.

What are the main applications and when do you expect them to occur?
OCT has had the largest impact in ophthalmology where it can be used to create cross-sectional images of retinal pathology with higher resolution than any other non-invasive imaging technique. In addition, image information can be quantitatively analyzed to measure specific features, such as retinal thickness or nerve fibre layer thickness, which are indicators of diabetic retinopathy or glaucoma.

OCT is also being developed for intravascular imaging, where it shows promise for assessing unstable plaque in coronary arteries and guiding interventional procedures, such as stent placement.

Additional applications include guiding biopsy for cancer detection and guiding surgical procedures. OCT is also having a powerful impact in fundamental research in areas ranging from small animal imaging, which is important for pharmaceutical discovery and development, to non-destructive evaluation of materials.

What would you say is the most important recent advance?
One of the most powerful recent advances in OCT is the development of "Fourier domain" detection methods. Conventional OCT technology used scanning low coherence interferometers and measured echoes of light sequentially as a function of time. In contrast, Fourier domain detection measures the spectrum of the interference using a broadband light source and a high-speed spectrometer, or a swept laser light source and detectors. Information on the echo time delay of light is obtained by Fourier transforming the interference spectrum.

The new technique enables imaging to be performed between 50 and 500 times faster than previously possible. This is a powerful advance because the extremely high speeds enable 3D imaging to be performed in vivo. 3D-OCT provides comprehensive volumetric information on structure and promises to dramatically enhance visualization and diagnostic performance.

What are the key challenges left to overcome in this field?
Perhaps the most challenging issue is to translate the technology from the laboratory to the clinic. The clinical environment is completely different from the research environment in the university and requires a team of investigators who understand and work effectively in both environments. This type of research and development is extremely complex, but advances can have a significant impact on healthcare and represent an important contribution to society.

What do you think the next big breakthrough will be?
It is tempting to think about scientific advances in terms of breakthroughs, but I don't believe that this is necessarily the case. Most of the time advances are made by individual research groups performing dedicated work on a series of highly specific problems or applications. A series of evolutionary advances, taken together, can create a major, revolutionary advance.

• This article originally appeared in the May 2008 issue of Optics & Laser Europe magazine.

View pdf of article


http://optics.org/article/34127