martes, 23 de agosto de 2011

Congreso internacional de ciencias neurológicas en Washington

18 noviembre 2008
Congreso internacional de ciencias neurológicas en Washington

Más de 30.000 científicos se reúnen para discutir últimas investigaciones

Por Daniel Gorelick
Redactor

Washington – Durante una impresionante concentración de potencia intelectual, miles de científicos se reunirán en Washington durante cinco días de conferencias y coloquios sobre las últimas investigaciones innovadoras de materia cerebral.

Los organizadores esperan la asistencia de más de 30.000 personas al 38º Congreso anual de la Sociedad de Ciencias Neurológicas (SFN) que comenzó el 15 de noviembre. Más del 25 por ciento de los 32.180 asistentes a las reuniones de 2007 vinieron de fuera de Estados Unidos. Este año se espera una cifra similar.

SFN es una asociación profesional de científicos y médicos que estudian el cerebro, el sistema nervioso y las enfermedades afines.

La reunión anual de 2008 “ofrecerá un examen interesante de los nuevos avances significativos en investigaciones sobre el cerebro humano, desde conceptos básicos celulares hasta investigaciones sobre el comportamiento que afectan a la salud humana”, dijo Eve Marder, profesora de biología de la Universidad de Brandeis y presidente de SFN. “Científicos en todo el mundo hacen progresos significativos para entender el funcionamiento y salud del cerebro, y como siempre, cada nuevo descubrimiento revela nuevos misterios sobre como funciona el cerebro”.

CONFERENCIAS, PREMIOS Y MUESTRAS

En la reunión hay programadas más de 15.000 presentaciones científicas que van desde seminarios de 10 minutos hasta conferencias especiales de una hora de duración.

La mayoría de los datos de investigación se presentarán en sesiones diarias de muestra. En una sala cavernosa del tamaño de un hangar, miles de científicos estarán parados frente a sus carteles y describirán sus últimos descubrimientos en su trabajo con cualquier transeúnte interesado.

El congreso también mostrará varias conferencias especiales y ceremonias de premios, así como una gran sala en la que se expondrán los últimos productos de las compañías de biotecnología y aparatos médicos. Los elementos a destacar son:

• El galardonado coreógrafo Mark Morris, fundador del grupo de danza Mark Morris hablará sobre el movimiento, la danza y el cerebro.

• La científica francesa Catherine Dulac ofrecerá una conferencia sobre “el sexo y el aroma” en la que explicará cómo los ratones macho y hembra responden a las feromonas, químicos secretados por un animal que provocan una respuesta en el comportamiento de otro animal de la misma especie.

• La filósofa canadiense-estadounidense Patricia Churchland hablará sobre como los cerebros navegan sus mundos sociales y morales.

SFN también concederá más de una docena de premios que reconocerán logros científicos en varias ramas de las ciencias neurológicas.

El premio Julius Axelrod, que consta de 25.000 dólares, es un homenaje a científicos principales de la neurofarmacología que han demostrado también “iniciativa ejemplar” al ayudar a científicos jóvenes, y el premio Donald B. Lindsley de 2.500 dólares reconoce una tesis doctoral “sobresaliente” en neurociencia relacionada con el comportamiento.

El científico uruguayo Mauro Costa-Mattioli recibirá el Premio 2008 Eppendorf y Science en Neurobiología por detectar una proteína que controla la formación de recuerdos de larga data. (Véase Científico uruguayo gana premio internacional de neurobiología).

CONEXIONES INFORMALES

El congreso también ofrece a los científicos una oportunidad de reunirse y comentar su trabajo de modo informal.

La comunidad diplomática en Washington tiene previsto recibir a los científicos en diversas recepciones en las embajadas con la intención de animarles a hacer contactos. Canadá, Alemania, Hungría, Islandia, España, Suiza y Nueva Zelanda son algunos de los países que celebrarán eventos.

Varios actos de orientación regional se celebran al tiempo que tiene lugar el congreso de la SFN. La Sociedad de Neurocientíficos Árabes, que intenta estimular la colaboración entre los neurocientíficos árabes para promover la ciencia neurológica en el mundo árabe, celebró su tercera reunión anual la noche del 16 de noviembre. También hay actos planeados para neurocientíficos armenios, chinos, griegos, iraníes, coreanos y holandeses.

Para conocer más sobre el Congreso anual 2008 de la Sociedad de Ciencias Neurológicas, véase su sitio web (en inglés).

http://www.america.gov/st/health-spanish/2008/November/20081118143322gd0.5459101.html
http://www.america.gov/esp/science.html
http://www.america.gov/esp/
http://www.america.gov/

Spectral CT

Spectral CT

Exploring the spectrum: Advances and potential for Spectral CT

Global research and advanced development teams from Philips Healthcare, together with clinical investigators from around the world, are examining how to further enhance the diagnostic capabilities of CT in a new research area known as Spectral CT.

Just as any child with a prism can demonstrate, white light consists of a spectrum of colors. In other words, white light is polychromatic. The x-ray beam used in CT scanners is also polychromatic. Advances in CT detector technology can now take advantage of the polychromatic nature of the x-ray spectrum when creating CT images. Our goal is to use the additional information inherent in the full spectrum of an x-ray beam to add clinical value to CT. A number of potential clinical areas have already been identified and show early promise.

With prototype detector technology from Philips*, spectral CT can already facilitate better discrimination of tissues, making it easier to differentiate between materials, such as tissues containing calcium and iodine, that can appear similar on traditional, monochromatic CT techniques. It also can potentially increase diagnostic accuracy in a wide range of clinical applications, such as enhancing the conspicuity and detection of smaller vessels associated with sub-segmental pulmonary emboli.

Splitting the x-ray beam into its component energies, or spectrum, by advanced detection technology is the secret to Philips Spectral CT approach. A dual energy detection system depicted above has been in clinical operation since 2005. More advanced, multi-energy or photon counting detection systems are in prototype form. Note: The separation of the detection layers is for illustrative purposes only. In reality the detector layers are in physical contact, one with the other.

Spectral CT may have other advantages as well. Patients may benefit not only from images that facilitate more confident diagnosis, but potentially from decreased x-ray radiation dose. Using spectral information to create virtual non-contrast images may eliminate traditional non-contrast acquisitions in some studies. Eliminating these non-contrast images can also have an economic benefit, as it shortens exams and could lead to increased patient throughput.

Another important clinical and economic benefit is that spectral CT is hypothesized to increase imaging sensitivity to contrast agents, thereby enabling the detection of lower (more localized) concentrations and decreasing the injected volume. Improving the sensitivity of CT to low amounts of contrast agent may enable the use of novel contrast agents, allowing CT to provide molecular and physiological information.

As the number of clinically useful applications expands, the promise of spectral CT for simplified diagnosis and therapeutic guidance grows. Today, most experts agree that we are only beginning to understand its full potential.

To learn more, please click here to request white paper entitled “Exploring the Spectrum: Advances and potential for Spectral CT.” This paper provides a brief overview of spectral CT principles, discusses four techniques for acquiring spectral CT data, and summarizes a range of groundbreaking spectral CT advances and applications.

* Works-in-progress – pending commercial availability and regulatory approval.

http://www.healthcare.philips.com/main/products/ct/products/spectral_ct/index.wpd

Allan M. Cormack and Godfrey N. Hounsfield

COMPUTED MEDICAL IMAGING
Nobel Lecture, 8 December, 1979
BY
GODFREY N. HOUNSFIELD
The Medical Systems Department of Central Research Laboratories EMI,
London, England

In preparing this paper I realised that I would be speaking to a general
audience and have therefore included a description of computed tomography
(CT) and some of my early experiments that led up to the development
of the new technique. I have concluded with an overall picture of the
CT scene and of projected developments in both CT and other types of
systems, such as Nuclear Magnetic Resonance (NMR).

Although it is barely 8 years since the first brain scanner was constructed,
computed tomography is now relatively widely used and has been
extensively demonstrated. At the present time this new system is operating
in some 1000 hospitals throughout the world. The technique has succesfully
overcome many of the limitations which are inherent in conventional X-ray
technology.

When we consider the capabilities of conventional X-ray methods, three
main limitations become obvious. Firstly, it is impossible to display within
the framework of a two-dimensional X-ray picture all the information
contained in the three-dimensional scene under view. Objects situated in
depth, i. e. in the third dimension, superimpose, causing confusion to the
viewer.

Secondly, conventional X-rays cannot distinguish between soft tissues. In
general, a radiogram differentiates only between bone and air, as in the
lungs. Variations in soft tissues such as the liver and pancreas are not
discernible at all and certain other organs may be rendered visible only
through the use of radio-opaque dyes.

Thirdly, when conventional X-ray methods are used, it is not possible to
measure in a quantitative way the separate densities of the individual
substances through which the X-ray has passed. The radiogram records
the mean absorption by all the various tissues which the X-ray has penetrated.
This is of little use for quantitative measurement.

Computed tomography, on the other hand, measures the attenuation of
X-ray beams passing through sections of the body from hundreds of
different angles, and then , from the evidence of these measurements, a
computer is able to reconstruct pictures of the body’s interior.

Pictures are based on the separate examination of a series of contiguous
cross sections, as though we looked at the body separated into a series of
thin “slices”. By doing so, we virtually obtain total three-dimensional information
about the body.

[Fig. 1. CT scan taken through the kidneys]

However, the technique’s most important feature is its enormously
greater sensitivity. It allows soft tissue such as the liver and kidneys to be
clearly differentiated, which radiographs cannot do. An example is shown
in Fig. 1.

It can also very accurately measure the values of X-ray absorption of
tissues, thus enabling the nature of tissue to be studied.

These capabilities are of great benefit in the diagnosis of disease, but CT
additionally plays a role in the field of therapy by accurately locating, for
example, a tumour so indicating the areas of the body to be irradiated and
by monitorig the progress of the treatment afterwards.

It may be of interest if I describe some of the early experiments that led
up to the development of CT.

Some time ago I investigated the possibility that a computer might be
able to reconstruct a picture from sets of very accurate X-ray measurements
taken through the body at a multitude of different angles. Many
hundreds of thousands of measurements would have to be taken, and
reconstructing a picture from them seemed to be a mammoth task as it
appeared at the time that it would require an equal number of many
hundreds of thousands of simultaneous equations to be solved.

When I investigated the advantages over conventional X-ray techniques
however, it became apparent that the conventional methods were not
making full use of all the information the X-rays could give.

On the other hand, calculations showed that the new system used the
data very efficiently and would be two orders of magnitude more sensitive
than conventional X-rays. For this reason I hoped that it would be possible
to distinguish between the various tissues of the body, although I could not
find any literature which suggested that such X-ray absorption differences
existed.

[...]

http://nobelprize.org/nobel_prizes/medicine/laureates/1979/hounsfield-lecture.pdf
http://nobelprize.org/nobel_prizes/medicine/laureates/1979/hounsfield-lecture.html
http://nobelprize.org/nobel_prizes/medicine/laureates/1979/
http://nobelprize.org/nobel_prizes/lists/1979.html
http://nobelprize.org/nobel_prizes/lists/2007.html
http://nobelprize.org/nobel_prizes/
http://nobelprize.org/

News: Roadrunner, world's first petaflop/s system, number ...

News: Roadrunner, world's first petaflop/s system, number one on Top500, and number three on Green500

* Green500 ranks the world's top supercomputers by energy efficiency. On the new Green500 release, Roadrunner is third. In the statement accompanying the June 30 ranking, Roadrunner is cited for "extraordinary energy efficiency... For comparison, the last two supercomputers to top the TOP500 are #43 and #499 on the Green500." (July 1, 2008)
* Roadruner is number one on the new Top500 list of the world's fastest supercomputers (June 18, 2008)
* Roadrunner supercomputer puts research at new scale (LANL Roadrunner press release: scientists successfully testing human vision simulation codes, at petascale, on Roadrunner, June 16, 2008)
* Roadrunner supercomputer fastest in world (LANL Roadrunner press release: initial announcement with links to a brief movie, statements by NM US Senator Pete Domenici and US Representative Tom Udall, June 9, 2008)
* ...Fastest in the World (NNSA Roadrunner press release, June 9, 2008)
* Roadrunner Smashes Petaflops Barrier (IBM Roadrunner press release, Armonk, NY, June 9, 2008)
* Roadrunner-Computing in the Fast Lane (1663, Los Alamos Science and Technology Magazine, May 2008)

Roadrunner Background

In a test run on May 27, the Roadrunner supercomputer, built by IBM with funding from the National Nuclear Security Administration (NNSA) for Los Alamos National Laboratory, achieved a long-sought supercomputing goal: performing more than a thousand trillion operations per second, or petaflop/s.

A “flops” is an acronym meaning floating-point operations per second. One petaflop/s is 1,000 trillion operations per second. To put this into perspective, if each of the 6 billion people on earth had a hand calculator and worked together on a calculation 24 hours per day, 365 days a year, it would take 46 years to do what Roadrunner would do in one day.

Roadrunner is the first supercomputer to use a hybrid processor architecture, which is based on both Opteron X64 processors from Advanced Micro Devices (AMD) and the IBM Cell Broadband Engine™ (Cell BE) processing elements.

Roadrunner will be housed at NNSA’s Los Alamos National Laboratory. The laboratory worked collaboratively with IBM, the manufacturer, for six years to deliver a novel computer architecture that can meet the nation’s evolving national security needs. The result has redefined the frontier of supercomputing, not only by crossing the one petaflop threshold, but also by introducing a new paradigm for the future.

Roadrunner is also rated as very energy efficient (green) (performance/watt).

http://www.lanl.gov/roadrunner/
http://www.lanl.gov/

U.S. Department of Energy’s New Supercomputer is Fastest in ...

June 9, 2008

U.S. Department of Energy’s New Supercomputer is Fastest in the World
Computer Breaks One Petaflop Barrier

WASHINGTON, DC –U.S. Secretary of Energy Samuel Bodman today announced that the new Roadrunner supercomputer is the first to achieve a petaflop of sustained performance. Roadrunner will be used by the Department of Energy’s National Nuclear Security Administration (NNSA) to perform calculations that vastly improve the ability to certify that the U.S. nuclear weapons stockpile is reliable without conducting underground nuclear tests.

“This enormous accomplishment is the most recent example of how the U.S. Department of Energy’s world-renowned supercomputers are strengthening national security and advancing scientific discovery,” said Secretary Bodman. “Roadrunner will not only play a key role in maintaining the U.S. nuclear deterrent, it will also contribute to solving our global energy challenges, and open new windows of knowledge in the basic scientific research fields.”

Roadrunner will be housed at NNSA’s Los Alamos National Laboratory. The laboratory worked collaboratively with IBM, the manufacturer, for six years to deliver a novel computer architecture that can meet the nation’s evolving national security needs. The result has redefined the frontier of supercomputing, not only by crossing the one petaflop threshold, but also by introducing a new paradigm for the future.

Most nuclear weapons in the U.S. stockpile were produced anywhere from 30 to 40 years ago, and no new nuclear weapons have been produced since the end of the Cold War. Since President George H.W. Bush ended underground nuclear testing in 1992, the U.S. has relied on science-based research and development to extend the lifetime of the current weapons in the stockpile. NNSA’s ability to model the extraordinary complexity of nuclear weapons systems is essential to maintaining confidence in the performance of the aging stockpile.

A “flop” is an acronym meaning floating-point operations per second. One petaflop is 1,000 trillion operations per second. To put this into perspective, if each of the 6 billion people on earth had a hand calculator and worked together on a calculation 24 hours per day, 365 days a year, it would take 46 years to do what Roadrunner would do in one day.

Established by Congress in 2000, NNSA is a separately organized agency within the U.S. Department of Energy responsible for enhancing national security through the military application of nuclear science. NNSA maintains and enhances the safety, security, reliability and performance of the U.S. nuclear weapons stockpile without nuclear testing; works to reduce global danger from weapons of mass destruction; provides the U.S. Navy with safe and effective nuclear propulsion; and responds to nuclear and radiological emergencies in the United States and abroad. Visit the National Nuclear Security Administration for more information.

Media contact(s):
Phil West, (202) 586-4940
Bryan Wilkes, (202) 586-7371

http://www.doe.gov/news/6321.htm
http://www.doe.gov/news/
http://www.doe.gov/

FUNDAMENTOS PARA CREAR UN SER VIVO INTELIGENTE

La red neuronal reacciona al entorno según las uniones sinápticas existentes.

Al principio en la infancia hay establecidas mediante crecimiento desordenado muchas uniones sinápticas entre neuronas próximas.

La región de neuronas segregadoras de dopamina (VTA) recibe axones que informan como de bien son satisfechas las necesidades vitales, y segrega más dopamina en las otras regiones cuando mejor son satisfechas estas necesidades.

La dopamina al alcanzar las uniones sinápticas provoca que las neuronas activas permanezcan activas más intensamente. Al estar activas más intensamente, se refuerzan las uniones sinápticas entre estas neuronas (regla de Hebb).

El paso del tiempo degrada constantemente todas las uniones sinápticas.

La red neuronal humana tiene unas 10^11 neuronas. Si decidimos usar 2*10^11 neuronas, si cada ordenador o máquina pudiese procesar el equivalente a 1 millón de neuronas, necesitaríamos unos 200 mil ordenadores o máquinas trabajando en red sincronizadamente. Seguramente el entrenamiento sería más difícil y requeriría más tiempo al ser un sistema nervioso más grande que el humano, pero una vez que aprendiese más rápido solo, con el tiempo, al ser inmortal y más capaz, seguramente contribuiría a mejorar el mundo.

¿Qué necesidad o necesidades vitales le pondríamos?

THE PLEASURE CENTRES

THE PLEASURE CENTRES

For a species to survive, its members must carry out such vital functions as eating, reproducing, and responding to aggression. Evolution has therefore developed certain areas in our brain whose role is to provide a pleasurable sensation as a “reward” for carrying out these vital functions.

These areas are interconnected with one another to form what is known as the “reward circuit”.

The ventral tegmental area (VTA), a group of neurons at the very centre of the brain, plays an especially important role in this circuit. The VTA receives information from several other regions that tell it how well various fundamental needs, and more specifically human needs, are being satisfied.

The VTA then forwards this information to another structure further forward in the brain: the nucleus accumbens. To send this information to the nucleus accumbens, the VTA uses a particular chemical messenger: dopamine. The increase in the level of dopamine in the nucleus accumbens, and in other brain regions, reinforces the behaviours by which we satisfy our fundamental needs.

http://thebrain.mcgill.ca/flash/d/d_03/d_03_cr/d_03_cr_que/d_03_cr_que.html
http://thebrain.mcgill.ca/
http://www.mcgill.ca/

Charles Darwin y Sigmund Freud, odiados por antideterministas

Sobre como crear vida inteligente, incluso más inteligente que los seres humanos, lo cual es un objetivo científico físicamente alcanzable que seguramente resultaría ser extremadamente útil.

La red neuronal gigante se puede dividir en fragmentos y cada fragmento puede funcionar en un ordenador o proceso diferente dentro de una gran red de ordenadores o superordenadores. Hacer funcionar una red neuronal gigante parece un problema que se resuelve mediante muchos procesos funcionando en paralelo ejecutando el mismo software pero con diferentes datos, e intercambiando datos entre sí sincronizadamente.

+ ¿Qué es lo que buscan las redes neuronales naturales?

Maximizar la felicidad a lo largo del tiempo, ¿no?

+ ¿Qué es la felicidad?

+ ¿Qué efecto o manifestación tiene la felicidad en la transmisión de los impulsos nerviosos eléctricos de una red neuronal natural?

+ ¿Qué efecto o manifestación tienen las drogas que crean adición en la transmisión de los impulsos nerviosos eléctricos de una red neuronal natural?